Machine learning approach to predict patient position for preventing bedsores

Author(s): Aditya Aggarwal, Sujoy De

Abstract

The Agency for Healthcare Research & Quality estimates more than 2.5 million individuals in the United States develop bedsores annually that cost $9.1-$11.6 billion to the healthcare system. In this paper, we develop a low-cost solution to reduce the risk of bedsores for bedridden patients using machine learning. Elderly patients with mobility impairments are the highest risk population segment for bedsores (also known as pressure ulcers). Currently, smart beds that send alarms when patients have not changed their position in bed for a long time are used to manage the risk of developing bedsores. However, such smart devices are cost prohibitive. The proposed affordable solution uses low-cost load-cells’ readings to accurately estimate the patient position with an accuracy of 98.8%. Specifically, the solution manages bedsore risk by deriving meaningful, intuitive features that are used by the machine learning model to generate alerts when a patient has been in the same position for a prolonged period of time.

Picture of Association of Data Scientists

Association of Data Scientists

The Chartered Data Scientist Designation

Achieve the highest distinction in the data science profession.

Elevate Your Team's AI Skills with our Proven Training Programs

Strengthen Critical AI Skills with Trusted Generative AI Training by Association of Data Scientists.

Our Accreditations

Get global recognition for AI skills

Chartered Data Scientist (CDS™)

The highest distinction in the data science profession. Not just earn a charter, but use it as a designation.

Certified Data Scientist - Associate Level

Global recognition of data science skills at the beginner level.

Certified Generative AI Engineer

An upskilling-linked certification initiative designed to recognize talent in generative AI and large language models

Join thousands of members and receive all benefits.

Become Our Member

We offer both Individual & Institutional Membership.