Machine Learning Implementations Scrutinized With A Process Re-engineering Lens

Author(s): Abhinav Mathur, Sunny Verma, Arun Dahiya

Abstract

Despite the advances in data acquisition, storage and algorithm capabilities, the impact of Machine Learning (ML) initiatives is sometimes debated across sponsoring units and organizations. While there is a possibility of the data and models not having the desired predictive value, there is a possibility that the desired business value is not realized due to improper implementation of the interventions from the predictions intended. We discuss the chronological nature of data richness and the increase in predictive capability, and conversely, there exists an inverse relationship between most effective interventions and the richness of data available for actionable predictions across process & product lifecycles. It thus becomes imperative to view ML implementations not as technology implementations but as Business Process Re-engineering initiatives to deliver the optimal business/process returns.

Picture of Association of Data Scientists

Association of Data Scientists

The Chartered Data Scientist Designation

Achieve the highest distinction in the data science profession.

Elevate Your Team's AI Skills with our Proven Training Programs

Strengthen Critical AI Skills with Trusted Generative AI Training by Association of Data Scientists.

Our Accreditations

Get global recognition for AI skills

Chartered Data Scientist (CDS™)

The highest distinction in the data science profession. Not just earn a charter, but use it as a designation.

Certified Data Scientist - Associate Level

Global recognition of data science skills at the beginner level.

Certified Generative AI Engineer

An upskilling-linked certification initiative designed to recognize talent in generative AI and large language models

Join thousands of members and receive all benefits.

Become Our Member

We offer both Individual & Institutional Membership.